Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription: rational therapeutic approach to frontotemporal dementia.

نویسندگان

  • Basar Cenik
  • Chantelle F Sephton
  • Colleen M Dewey
  • Xunde Xian
  • Shuguang Wei
  • Kimberley Yu
  • Wenze Niu
  • Giovanni Coppola
  • Sarah E Coughlin
  • Suzee E Lee
  • Daniel R Dries
  • Sandra Almeida
  • Daniel H Geschwind
  • Fen-Biao Gao
  • Bruce L Miller
  • Robert V Farese
  • Bruce A Posner
  • Gang Yu
  • Joachim Herz
چکیده

Progranulin (GRN) haploinsufficiency is a frequent cause of familial frontotemporal dementia, a currently untreatable progressive neurodegenerative disease. By chemical library screening, we identified suberoylanilide hydroxamic acid (SAHA), a Food and Drug Administration-approved histone deacetylase inhibitor, as an enhancer of GRN expression. SAHA dose-dependently increased GRN mRNA and protein levels in cultured cells and restored near-normal GRN expression in haploinsufficient cells from human subjects. Although elevation of secreted progranulin levels through a post-transcriptional mechanism has recently been reported, this is, to the best of our knowledge, the first report of a small molecule enhancer of progranulin transcription. SAHA has demonstrated therapeutic potential in other neurodegenerative diseases and thus holds promise as a first generation drug for the prevention and treatment of frontotemporal dementia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increasing progranulin levels and blockade of the ERK1/2 pathway: upstream and downstream strategies for the treatment of progranulin deficient frontotemporal dementia.

Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder marked by mild-life onset and progressive changes in behavior, social cognition, and language. Loss-of-function progranulin gene (GRN) mutations are the major cause of FTLD with TDP-43 protein inclusions (FTLD-TDP). Disease-modifying treatments for FTLD-TDP are not available yet. Mounting evidence indicates that cell cycle...

متن کامل

Screening for therapeutic targets of vorinostat by SILAC-based proteomic analysis in human breast cancer cells.

Histone deacetylases (HDACs) play critical roles in silencing tumor suppressor genes. HDAC inhibitors reactivate tumor suppressor genes and inhibit tumor cell growth in vitro and in vivo, and several HDAC inhibitors are currently being evaluated in clinical trials for cancer therapy. A comprehensive analysis of proteins regulated by HDAC inhibitors would enhance our ability to define and charac...

متن کامل

The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis, down-regulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells.

BACKGROUND Chronic lymphocytic leukemia is a neoplastic disorder that arises largely as a result of defective apoptosis leading to chemoresistance. Stromal cell-derived factor-1 and its receptor, CXCR4, have been shown to play an important role in chronic lymphocytic leukemia cell trafficking and survival. DESIGN AND METHODS Since histone acetylation is involved in the modulation of gene expr...

متن کامل

Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid.

BACKGROUND Epigenetic programming, dynamically regulated by histone acetylation, is a key mechanism regulating cell proliferation and survival. Little is known about the contribution of histone deacetylase (HDAC) activity to the development of pulmonary arterial hypertension, a condition characterized by profound structural remodeling of pulmonary arteries and arterioles. METHODS AND RESULTS ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 18  شماره 

صفحات  -

تاریخ انتشار 2011